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Abstract
In the past few decades, there has been explosive growth in the construction of
nanoparticle-based drug delivery systems (NDDSs), namely nanomedicines,
owing to their unique properties compared with traditional drug formulations.
However, because of a variety of challenges, few nanomedicines are on sale in
the market or undergoing clinical trial at present. Thus, it is essential to look
back and re-evaluate what these NDDSs can really do  , whyin vivo
nanomedicines are regarded as potential candidates for next-generation drugs,
and what the future of nanomedicine is. Here, we focus mainly on the
properties of NDDSs that extend blood circulation, enhance penetration into
deep tumor tissue, enable controllable release of the payload into the
cytoplasm, and overcome multi-drug resistance. We further discuss how to
promote the translation of nanomedicines into reality. This review may help to
identify the functions of NDDSs that are really necessary before they are
designed and to reduce the gap between basic research and clinical
application.
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Introduction
With their unique physical and chemical properties as well as 
their nanoscale effects, nanoparticle-based drug delivery systems 
(NDDSs) are currently under extensive development for applica-
tions in the treatment of diseases such as cardiovascular diseases, 
infectious diseases, diabetes, and cancer1–3. It has been reported 
that most cancers, as malignant diseases, can be suppressed with 
various NDDSs, including inorganic nanoparticles (NPs) such as 
metallic NPs and semiconductor nanostructures, organic NPs such 
as polymer carriers and carbon nanostructures, and hybrid NPs4–6.  
Disappointingly, a statistical analysis showed that only 0.7% 
(median) of the injected dose of the NDDS reached the tumor 
region in mouse models and this value has not improved in the 
past 10 years7. There is no doubt that there are systemic effects on 
the interaction between NDDSs and organisms. From the material 
perspective, the circulation, biodistribution, internalization, and  
trafficking of NDDSs are highly dependent on the physicochemi-
cal properties of NDDSs such as size, shape, surface chemistry, 
and material type8,9. From the biological perspective, NDDSs need 
to cross or elude a series of complex biological barriers, includ-
ing opsonization by the mononuclear phagocyte system (MPS), 
non-specific distribution, interstitial fluid pressure, cellular inter-
nalization, and drug efflux pumps, before exerting their therapeutic 
effect7,10. In this review, we will focus on discussing the basic func-
tions of NDDSs for cancer therapy and present recently developed 
strategies for improving the efficacy of NDDSs in vivo. Finally, 
we propose what we need to do to accelerate the translation of  
nanomedicines in the future.

Extended blood circulation and accumulation with 
passive/active targeting
Blood circulation time is an important parameter that affects the 
therapeutic efficiency and outcome. The fundamental functions of 
NDDSs are to increase the drug concentration in targeted tissues 
and to reduce systemic side effects by modulating the pharmacoki-
netics and biodistribution of the drug payload. In order to increase 
the drug concentration at tumor sites, longer blood circulation 
time is vital because it enhances the probability of drug delivery 
to the tumor without sequestration by the MPS. PEGylation is a 
widely used approach for prolonging circulation time, and some 
PEGylated nanomedicines, such as Adagen, Doxil, Macugen, and 
Pegasys, have been approved for clinical use11–13. Passive and active 
targeting are the two alternatives for enhancing the efficiency of 
NDDS accumulation in tumor tissue. For passive targeting, the the-
oretical mechanism is the “enhanced permeability and retention” 
(EPR) effect, which broadly explains why NDDSs can accumulate 
in tumor tissue through leaky and defective blood vessels14,15. How-
ever, the EPR phenomenon was almost always studied in rapidly 
growing tumors in mouse models, and it has been suggested that 
the EPR effect does not work in the clinic, because of a lack of 
fenestrations in the tumor vessels of patients16,17. Therefore, the pas-
sive targeting strategy needs to be carefully evaluated and further 
validated in clinical trials. For active targeting, NDDSs mostly use 
targeting ligands such as antibodies, peptides, and aptamers, which 
specifically recognize overexpressed “biomarkers” in the tumor 
microenvironment or the surface of cancer cells after extravasa-
tion of the NDDS from blood vessels1,18; this approach enhances 
the residence time and the local drug concentration. Strikingly, the 

targeting ability of NDDSs may be reduced or abolished after the 
formation of protein corona in the biological milieu19. Regardless 
of whether they possess passive or active targeting capabilities, the 
“foreign” NDDSs are directly exposed to the MPS once injected 
into the body, so the blood circulation time will be decreased.

To overcome the first biological barrier, namely opsoniza-
tion and sequestration by the MPS, some “invisibility cloak” 
NDDSs have recently been developed on the basis of biomimetic  
strategies20–24. For instance, Zhang et al. have reported platelet 
membrane-cloaked NPs, with biodegradable polymeric NPs inside 
and immunomodulatory and adhesion antigens on the surface23. 
The results showed that the cloaked NPs were less efficiently  
recognized by macrophage-like cells and did not induce comple-
ment activation. Also, the cloaked NPs have enhanced adhesion to 
damaged vasculature and improved therapeutic efficacy compared 
with uncloaked NPs. The lesson in these cases is that we need to 
rethink what the body really needs—maybe it is better to work with 
the body’s natural processes than against them.

Enhanced penetration depth in tumor tissue
Weak penetration of drug into the deep tissue of solid tumors dra-
matically attenuates treatment efficacy. Although NDDSs with long 
circulation periods have the advantage of increased accumulation 
in the tumor microenvironment after extravasation from blood ves-
sels, penetration into deep tissue remains a challenge because of 
the high interstitial fluid pressures and poor lymphatic drainage in 
tumors25. In early studies, thanks to the controllable physicochemi-
cal parameters of NDDSs, strategies focused mostly on how to 
optimize single physicochemical characteristics of NDDSs, such 
as size, shape, and surface chemistry, to obtain excellent penetra-
tion and therapeutic effects9,26–28. Recently, a few smart “multistage” 
NDDSs have been reported to “adapt” biological barriers and 
improve penetration10,29,30. Shen et al. have reported an injectable 
micrometer-sized generator loaded with a pH-sensitive polymeric 
drug (iNPG-pDox)31. Once released from iNPG after iNPG-pDoxs 
accumulates at the tumor site, the pDox self-assembly forms NPs 
inside the tumors and then the pDox NPs are internalized and trans-
ported to the perinuclear region. Kohane et al. have developed a 
photoswitchable spiropyran-based NDDS32. Upon irradiation at 
365 nm, the size decreased from 103 to 49 nm and the shrinkage 
enhanced penetration into deep tissue and drug release.

Logically, from a biological perspective, the tumor’s pathophysi-
ological characteristics should be clearly understood so that the 
NDDS can be designed to effectively penetrate into deep tissue. 
Tumors are highly heterogeneous and the tumor characteristics 
depend on the cancer type, pathological state, location, and indi-
vidual factors such as age, lifestyle, and genetics33. Subpopulations 
of cancer cells with unique genomes exist in different times and 
places in one tumor34. This heterogeneity is challenging for clinical 
diagnosis and causes the heterogeneous distribution of free drug or 
NDDS in tumor tissue35. Thus, tumor heterogeneity should not be 
ignored when NDDSs are designed to increase the targeting ability 
and enhance the penetration. For instance, Kataoka et al. have dis-
covered “dynamic vents” which undergo spontaneous and transient 
opening and closure within tumor microvessels36. The eruption 
process can increase accumulation and retention of large NPs in 
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sparsely vascularized tumors. By exploiting this natural phenom-
enon, investigators can develop new strategies to efficiently deliver 
and retain large NDDSs in deep tumor tissue. In addition, Chan  
et al. have reported that tumor pathophysiology and volume can 
significantly influence the targeting of NPs37. As the Chinese  
proverb says, “Know yourself and know your enemy, you will win 
every war”. The more we know about the NDDS and the tumor 
characteristics, the better the therapeutic effect.

Controllable release of the payload into the cytoplasm
Targeting and controllable release are the basic characteristics 
of NDDSs. Controllable release, which means that the loaded 
drugs are liberated in the right place and time, can significantly 
reduce administration times and avoid toxicity to other organs. 
In general, controllable release is facilitated mainly by external 
and internal stimulus-response strategies38,39. Internal stimulus- 
responsive NDDSs are sensitive to factors such as pH, redox  
status, and enzyme levels, which are often abnormal in tumor cells. 
Thus, the response efficiency is highly dependent on the specific 
biological conditions within the treated mouse model. Among  
the aforementioned strategies, enzyme-sensitive NDDSs have  
been enthusiastically explored because of their high selectivity  
and specificity40,41. However, the enzyme-triggered activation 
of NDDSs should be properly understood and the sensitivity of 
NDDSs in vivo should be measured because of the possibility 
of steric hindrance at the active site in the interior of NDDS.  
In contrast, external stimulus-responsive NDDSs are sensitive to 
external physical factors, including temperature, magnetic fields, 
ultrasound, light, and electrical fields. External stimulation offers 
more precise control profiles compared with internal stimula-
tion, but the choice of “therapeutic window” is directly related 
to the outcome. It is still unclear whether these external physical  
factors can facilitate tumor metastasis and cause damage to the  
normal tissues. Meanwhile, the need for large external equipment 
to apply the stimulus also increases the difficulty of translation  
and application.

The therapeutic effect also has a close relationship with the  
controlled-release mechanism, which affects how the payload  
drug is transported from the interior of the NDDS to the cyto-
plasm. Thanks to mathematical models, some drug release mech-
anisms have been simulated. For example, the process of protein 
release from an NDDS has been accurately simulated with an  
established mathematical model by Shoichet et al.42. Impor-
tantly, the simulated release process has also been confirmed by  
experiments with two proteins. The main controlled-release  
mechanisms that have been discovered so far include diffusion, 
osmosis, erosion, and dissolution43,44. Thus, computer simula-
tion provides a powerful tool for us to better design NDDSs for  
controllable release and to understand the release process.

Circumvention of tumor drug resistance
Drug resistance, including intrinsic resistance and acquired  
resistance, is the main reason for the failure of chemotherapy45.  
The major mechanisms of multi-drug resistance (MDR) are 
decreased drug uptake, increased efflux of drugs, and changes in 
cell behavior46. Among these, increased efflux of drugs mediated 
by ATP-binding cassette (ABC) transporters, such as P-glycopro-
tein (P-gp) or ABCB1, has a close relationship with MDR47. New 

approaches have also been developed to tackle MDR in tumors. 
For instance, NPs mimicking Salmonella have been engineered 
by McCormick et al.48. The Salmonella mimics were constructed  
from gold NPs coated with the S. typhimurium type III secreted 
effector protein SipA, which reduces the function of P-gp. The  
bacterial mimics efficiently reduced the P-gp level and increased  
the tumor sensitivity to doxorubicin. Meanwhile, Artzi et al. have 
developed an implantable hydrogel-embedded ON/OFF molecular 
nanoswitch probe to sense and overcome cancer MDR49. Although 
NDDSs have successfully overcome MDR in some cases, the  
question remains whether NDDS-induced resistance will occur 
after administration of multiple doses. Also, as discussed above, 
tumor heterogeneity makes this problem more complex because it 
is unclear which subpopulations of cancer cells are actually respon-
sible for the resistance. Nevertheless, NDDSs are a promising 
choice for reversing drug resistance.

Nanoparticle-based drug delivery systems as a drug-
like modulator for therapy
NDDSs have always been used as a vehicle to deliver therapeutic 
drugs or imaging agents. Their physicochemical characteristics are 
carefully optimized to meet the demand of delivery and targeting. 
Interestingly, the fact that their physicochemical properties can 
be modified means that NDDSs can also be applied as drug-like 
modulators, without any loaded cargo, to treat disease. For exam-
ple, Overholtzer et al. have reported that ultrasmall poly(ethylene 
glycol)-coated silica NPs can inhibit tumor growth by inducing  
ferroptosis in starved cancer cells and in sensitive tumors50. At 
the same time, a study by Daldrup-Link et al. reported that iron  
oxide NPs can induce pro-inflammatory macrophage polarization 
in tumor tissues to suppress tumor growth51. The outcome was  
based only on the intrinsic therapeutic effect of pure NPs or  
material rather than loaded drug, indicating that the pure NPs  
also have therapeutic potential. The intrinsic therapeutic effects 
of other nanomaterials should be explored next. It will be worth  
investigating the modulatory effects of NDDSs on growth inhi-
bition, metastasis, and recurrence through regulation of tumor  
metabolism, signal transduction, ion transport, and other biologi-
cal processes that are common in tumors. However, it is impor-
tant to note that the potential toxicity of drug-like modulators to  
healthy organs should not be ignored, even though they may have a 
therapeutic effect on abnormal tissues.

What do we need to do in the future?
NDDSs have been designed to kill cancer cells by using the strate-
gies discussed above, and their in vivo behavior has been partly 
investigated in mouse models. In fact, an organism is a complex 
system and NDDSs encounter different biological milieus in dif-
ferent parts of the body. Therefore, the properties of NDDS will 
change dynamically during the delivery journey in vivo. Unfortu-
nately, NDDSs may lose the ability to execute the tactics designed 
by the “coach” (scientist). Although scientists have developed many 
smart and complex NDDSs, these NDDSs may be too complicated 
for clinical trials or therapeutic use. Vigilance is necessary to ensure 
that a “multi-functional” NDDS is not a “non-functional” NDDS 
in which the overall effectiveness is severely compromised by the 
weakest function in the system. Thus, further work is still needed 
to answer the question “What can NDDSs really do in vivo?”  
(Figure 1) and improve the translation of nanomedicines.
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Figure 1. Nanoparticle-based drug delivery systems: What can they really do and what should they do in vivo?

This problem may be solved in the following ways. Firstly, the fate 
of NDDSs, such as their integrity, surface characteristics, phar-
macokinetics, biodistribution, and immunological effects, needs 
detailed tracing and analysis52–54. Advanced technologies and 
methods are essential for this challenging exploration. Secondly, 
there should be a normative evaluation framework to assess the 
efficiency of NDDSs, and rational animal models, such as organs-
on-a-chip systems, should be established instead of just relying 
on the tumor size or survival curves in mouse models55. The 5R  
framework (AstraZeneca’s 5R principle: right target/efficacy, right 
tissue/exposure, right safety, right patient, and right commercial 
potential) may be of beneficial guidance56. It is equally impor-
tant to combine the skills of chemists, mathematicians, biolo-
gists, and medical scientists to design clinically valuable NDDSs.  
Understanding the heterogeneity and biological nature of the tumor 
will really help us create NDDSs which may meet the expected 
treatment efficiency. In addition, we should pay more attention to 
structurally simple and reproducibly synthesized NDDSs because 
these have the greatest potential to reach the patient. Finally, it is 
important for us to keep in mind that we should constantly rethink 
what we are doing now and what we need to do in the future.

Conclusions
NDDSs provide a flexible and versatile platform for tumor  
therapy. Given their longevity and targeting, NDDSs can efficiently 
penetrate tissue and controllably release their payload into the  
cytoplasm. Moreover, NDDSs can be used to overcome tumor  
drug resistance. In particular, the intrinsic therapeutic effects of 
pure NPs can be regarded as a new therapeutic strategy. However, 

our understanding of what NDDSs can really do is still limited 
in vivo, and translation of NDDSs is challenging. In summary,  
NDDSs are a promising choice for tumor therapy but many  
questions still need to be answered for their effective clinical  
translation.
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